References

Arai, G., Coppola, J. \& Jeffrey, G. A. (1960). Acta Cryst. 13, 553-564.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dickel, D. F., Holden, C. L., Maxfield, R. C., Paszek, L. E. \& Taylor, W. I. (1958). J. Am. Chem. Soc. 80, 123-125.
Henry, T. A. (1949). The Plant Alkaloids, pp. 768-769. Philadelphia: Blakiston.

Sheldrick, G. M. (1985). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.
Soriano-Garcia, M., Rodríguez, A., Walls, F. \& Toscano, R. (1989). J. Crystallogr. Spectrosc. Res. 19, 725-732.

Soriano-García, M., Rodríguez-Romero, A., Walls, F., Toscano, R. \& Villena Iribe, R. (1991). J. Crystallogr. Spectrosc. Res. 21, 681-685.
Soriano-García, M., Walls, F., Rodríguez, A. \& López-Celis, I. (1988). J. Crystallogr. Spectrosc. Res. 18, 197-206.

Acta Cryst. (1992). C48, 2057-2058

Structure of 2-[1-(2-Carboxyethyl)ethylidene]hydrazinecarbothioamide

By Seik Weng Ng
Institute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia

(Received 28 October 1991; accepted 26 February 1992)

Abstract

CH}_{3} \mathrm{C}\left(=\mathrm{NNHCSNH}_{2}\right)\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}\), $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}, M_{r}=189.24$, monoclinic, $P 2_{1} / n, a=$ 7.652 (2), $\quad b=10.398$ (1), $\quad c=11.135$ (2) $\AA, \quad \beta=$ $96.80(1)^{\circ}, \quad V=879.7(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.430 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \quad \mu=$ $3.18 \mathrm{~cm}^{-1}, T=298 \mathrm{~K}, F(000)=400, R=0.047$ for $1047 I \geq 3 \sigma(I)$ reflections. The thiosemicarbazone exists in the tautomeric thione form; the doublebonded S is H -bonded to two adjacent carboxyl O atoms $[\mathrm{S} \cdots \mathrm{O}=3.085(5), 3.280(5) \AA$].

Experimental. Equimolar amounts of levulinic acid and thiosemicarbazide were briefly heated together in ethanol; the cooled mixture furnished slightly tan colored crystals of the title compound. A crystal measuring approximately $0.22 \times 0.22 \times 0.22 \mathrm{~mm}$ was used for the diffraction analysis. The diffractometer was an Enraf-Nonius instrument equipped with Mo $K \alpha$ radiation. Accurate cell dimensions were obtained from the 25 most intense reflections in the $13 \leq \theta \leq 15^{\circ}$ thin shell. Intensity data were collected up to $2 \theta_{\text {max }}=50^{\circ}(h, k, \pm l, 9,12,13)$ by using the $\omega-2 \theta$ scan technique; 1659 reflections collected; 1417 unique reflections, with 1047 data satisfying the $I \geq$ $3 \sigma(I)$ criterion. The data were corrected for decay (min./max. correction $=1.0000 / 1.0002$); three (008 , 245,404) monitor reflections: negligible variation for the 16 h of collection. The data set was corrected for absorption by using the ψ-scan data (min./max. correction $=0.9751,0.9995$). The structure was solved using MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). The non-H atoms were refined anisotropically. A difference Fourier synthesis revealed all the H atoms. H atoms
were refined with $B=5 \AA^{2}$. The full-matrix leastsquares refinement based on F converged with $\Delta / \sigma<0.01$ at $R=0.047, w R=0.074\left\{w=\left[\sigma(F)^{2}+\right.\right.$ $\left.\left.(0.02 F)^{2}+1\right]^{-1}\right\} ; \quad S=0.830 ; 142$ variables were refined. The max. $\Delta \rho$ was 0.28 (3) e \AA^{-3}. Scattering factors were taken from Tables 2.2B and 2.3.1 of International Tables for X-ray Crystallography (1974, Vol. IV). Computations were performed using the MolEN structure determination package (Fair, 1990) on a DEC MicroVAX minicomputer. Table 1* lists the atomic coordinates and Table 2 bond distances and angles; the structure is shown in Fig. 1.

Related literature. The $\mathrm{N}-\mathrm{N}$ bond length of 1.382 (7) \AA in the thiosemicarbazone, which is shorter than the statistical average of $1.401 \AA$ found for planar $R_{2} \mathrm{~N}-\mathrm{N} R_{2}$ compounds but longer than the statistical average of $1.240 \AA$ found for $R-\mathrm{N}=\mathrm{N}-R$ compounds (Allen, Kennard, Watson, Brammer, Orpen \& Taylor, 1987), suggests doublebond character in the flat $\mathrm{C}=\mathrm{N}-\mathrm{N}-\mathrm{C}$ $\left[\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{C}=-178.9(5)^{\circ}\right]$ fragment. The compound also possesses a carboxylate unit, but the acid does not form a dimer through hydrogen bonding. Instead, the S atom hydrogen bonds to two adjacent [(i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $\left.\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z\right]$ carboxyl O atoms $\left[\mathrm{S} \cdots \mathrm{Ol}{ }^{\mathrm{i}}=3.085(5), \mathrm{S} \cdots \mathrm{O} \mathrm{l}^{\mathrm{ii}}=3.280\right.$ (5) $\left.\AA\right]$ to give rise to a hydrogen-bonded network.

[^0]Table 1. Positional parameters and their estimated standard deviations

$$
\begin{gathered}
B_{\mathrm{eq}}=(4 / 3)\left[a^{2} B_{1,1}+b^{2} B_{2,2}+c^{2} B_{3,3}+a b(\cos \gamma) B_{1,2}\right. \\
\left.+a c(\cos \beta) B_{1,3}+b c(\cos \alpha) B_{2,3}\right] .
\end{gathered}
$$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
S	$0.1269(2)$	$0.2019(2)$	$0.1234(1)$	$3.24(3)$
O1	$0.6948(6)$	$0.4927(5)$	$0.250(4)$	$4.6(1)$
O2	$0.9240(6)$	$0.3854(4)$	$0.3748(4)$	$4.1(1)$
N1	$0.2863(6)$	$0.3845(5)$	$0.2601(4)$	$3.5(1)$
N2	$0.4310(6)$	$0.3118(5)$	$0.1027(4)$	$2.81(9)$
N3	$0.5636(6)$	$0.4026(5)$	$0.1448(4)$	$2.74(9)$
C1	$0.8186(8)$	$0.4710(6)$	$0.3552(5)$	$3.2(1)$
C2	$0.8153(8)$	$0.5643(6)$	$0.2530(6)$	$3.4(1)$
C3	$0.8390(8)$	$0.5024(6)$	$0.1325(5)$	$3.0(1)$
C4	$0.6925(7)$	$0.4129(5)$	$0.0833(5)$	$2.5(1)$
C5	$0.7147(8)$	$0.3431(6)$	$-0.0301(5)$	$3.6(1)$
C6	$0.2920(7)$	$0.3078(5)$	$0.1660(5)$	$2.7(1)$

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

S-C6	1.700 (6)	N3-C4	1.270 (7)
$\mathrm{Ol}-\mathrm{Cl}$	1.314 (8)	$\mathrm{C} 1-\mathrm{C} 2$	1.492 (9)
O2-Cl	1.203 (7)	C2-C3	1.518 (9)
N1-C6	1.322 (8)	C3-C4	1.509 (8)
N2-N3	1.382 (7)	C4-C5	1.484 (9)
N2-C6	1.348 (7)		
S..O1 ${ }^{\text {i }}$	3.085 (5)	$\mathrm{S} \cdots \mathrm{Ol}^{\text {ii }}$	3.280 (5)
N3-N2-C6	117.8 (5)	N3-C4-C3	116.6 (5)
N2-N3-C4	117.2 (5)	N3-C4-C5	126.3 (6)
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$	122.3 (6)	C3-C4-C5	117.1 (5)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2$	113.0 (6)	S-C6-N1	121.2 (4)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$	124.7 (6)	S-C6-N2	120.8 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	113.9 (5)	N1-C6-N2	117.9 (5)
C2-C3-C4	114.8 (5)		

Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Fig. 1. Atom-numbering scheme.
This research has been generously supported by the University of Malaya (PJP 152/91).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. A. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. pp. S1-S19.
Fair, C. K. (1990). MolEN Structure Determination System. Delft Instruments, X-ray Diffraction B. V., Röntgenweg 1, 2624 BD Delft, The Netherlands.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England.

Acta Cryst. (1992). C48, 2058-2060

1,3-Dinitropyrrolo[1,2-b]isoquinoline-5,10-dione

By Du Ming-Hui
Beijing Medical University, Beijing, People's Republic of China

and Peter B. Hitchcock
School of Molecular Science, Sussex University, Brighton BN1 9QJ, England
(Received 2 December 1991; accepted 3 March 1992)

Abstract

C}_{12} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}, \quad M_{r}=287.2\), orthorhombic, Pbca, $a=11.336$ (2), $b=10.134$ (3), $c=20.275$ (3) \AA, $V=2329.2 \AA^{3}, Z=8, D_{x}=1.64 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71069 \AA, \quad \mu=1.3 \mathrm{~cm}^{-1}, \quad F(000)=1168, \quad T=$ 195 K , final $R=0.063$ for 638 observed reflections. The fused ring system is planar and the molecules are disordered between two orientations such that the N

atom is distributed between two sites. The two nitro groups are in the 1,3 sites of the pyrrolo ring and make angles of 44 and 48° with the mean plane of the fused ring nucleus.

Experimental. The compound (I) was obtained by nitration of pyrrolo[1,2-b]isoquinoline-5,10-dione

[^0]: * Lists of structure factors, anisotropic thermal parameters and calculated hydrogen positional parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55256 (14 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS0572]

